
The Scale of the Universe

Astrophysics April 26, 2005

Measuring Space

- Our part of Universe has at least three independent directions of separation
- Separation determined by a length scale
- □ In Newtonian theory, there are three independent units: Length, Time, & Mass
- In Einstein's General Relativity (GR), all physical quantities are measureable in length units

The Universe as a Metric Space

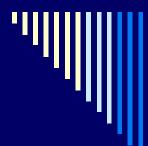
- Separations can be measured.(old: meter; new: light distance)
- In weak gravity, Euclidean axioms "work", e.g.

$$c^2=a^2+b^2 \rightarrow ds^2=dx^2+dy^2+dz^2$$

In Einstein's GR, separation between events is

$$ds^2 = \sum g_{\mu\nu} dx^{\mu} dx^{\nu}$$
.

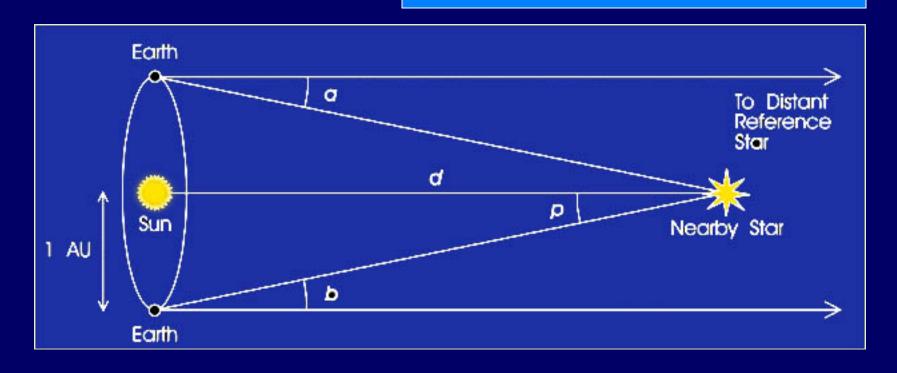
 $g_{\mu\nu}$ is called the metric tensor.


Measuring distances "nearby"

- Direct measure or by reflected light
- Moon: Laser reflector left by astronauts
- Planets: Parallax and radar reflection
- Sun: With planets and Newton
- Nearby stars: Parallax

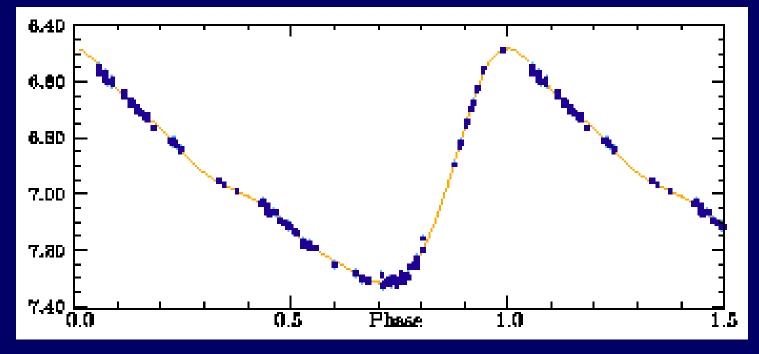
Hipparcos satellite: About 1,000 LY

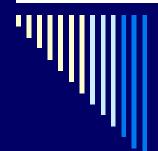
GAIA satellite (2010) 50,000 LY


Global Astrometric Interferometer for Astrophysics (GAIA) (http://astro.esa.int/gaia/)

Distance to nearby stars

By Parallax


$$p = \frac{1AU}{d} radians = \frac{206265}{d}$$



Measuring distance to far stars and nearby galaxies

Cepheids found in 1912 by Henrietta Leavitt to have a period-luminosity relation

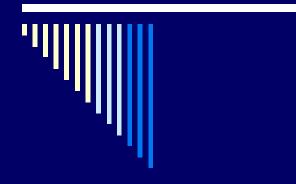
Magnitude

Getting distance via cepheids

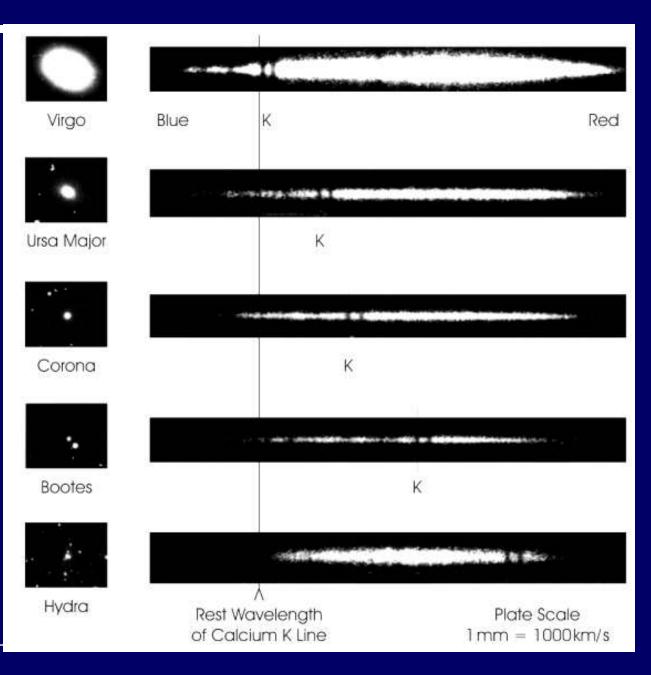
Measure period P and relative magnitude m, then find

 $M = -2.59 \log (P/day) - 0.67$

 $d = 10pc 10^{((m-M)/5)}$

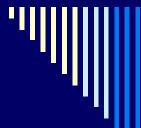

Galactic distances via Cepheids

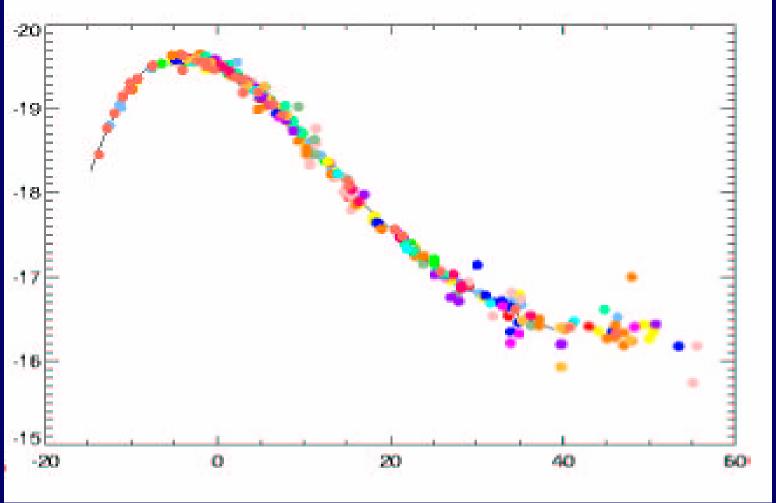
- Edwin Hubble found Andromeda was another galaxy in 1924
- In 1929, Hubble found distance/redshift relation for galaxies

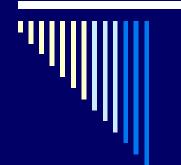

$$z = \Delta \lambda / \lambda = (H_o/c) d$$

For low velocities, z = v / c.

General: z = sqr[(1+v/c)/(1-v/c)]-1.


Doppler shift in spectra of galaxies

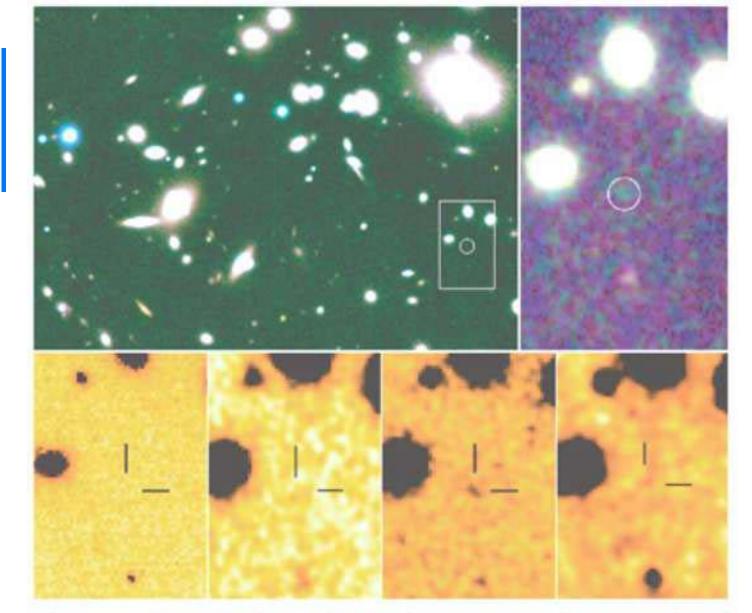



Galactic distances via SN la

All supernovae I a (binary systems) have nearly the same maximum brightness!

Supernovae magnitude vs days:

Latest Hubble type plot


In flat universe: $\Omega_{\rm M} = 0.28 \ [\pm 0.085 \ {\rm statistical}] \ [\pm 0.05 \ {\rm systematic}]$

Prob. of fit to $\Lambda = 0$ universe: 1%

Galaxy 13.23 Billion LY away!

□ In March 2004, ESO announced that a newly discovered galaxy named Abell 1835 IR1916, has a redshift of 10. Using Hubble's Law, the galaxy is found to be 13 230 million light-years away. We see the galaxy as it was when the Universe was only 470 million years old. That is only 3 percent of its current age. These results were determined by spectral analysis of its light.

Abell 1835 IR1916 - the Farthest Galaxy - Seen in the Near-Infrared (VLT ANTU + ISAAC)

Modern form of Hubble's law

From Friedmann-Robertson-Walker metric in General Relativity:

$$D_{L} = \frac{(1+z)c}{H_{0}\sqrt{|\Omega_{\kappa}|}} S \left\{ \sqrt{|\Omega_{\kappa}|} \int_{0}^{z} \left[\Omega_{\kappa} (1+z')^{2} + \Omega_{M} (1+z')^{3} + \Omega_{\Lambda} \right]^{-1/2} dz' \right\}$$

$$\Omega_{M} = \frac{8\pi G}{3H_{0}^{2}} \rho_{M} \quad \Omega_{k} = -\frac{kc^{2}}{R^{2}H_{0}^{2}} \quad \Omega_{\Lambda} = \frac{\Lambda c^{2}}{3H_{0}^{2}}$$

$$\Omega_k = -\frac{kc^2}{R^2 H_0^2}$$

$$\Omega_{\Lambda} = \frac{\Lambda c^2}{3H_0^2}$$

 $S(x)=\sin(x)$ for k=1, $\sinh(x)$ for k=-1, x for k=0